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An idealized model for the microstructure of thermally sprayed ceramic coatings, consisting

of the stacking of lamellae a few micrometres thick, has been used to estimate Young’s

modulus of the coating perpendicular to the coating plane. A theoretical relationship

between Young’s modulus and the microstructural parameters has been established. There

are two components of elastic strain of the coating under tensile stress, one arising from

localized elastic strain at the regions of real-bonded area between lamellae, and the other

arising from elastic bending of the lamellae between bonded regions. The bending

component only becomes significant for a percentage bonding ratio between lamellae of

less than 40%. The bending strain contribution depends strongly upon geometrical

parameters of the coating microstructure. The estimated Young’s modulus for a typical

alumina coating, based on quantitative microstructural data, was about 24% of that for the

fully dense material. Taking into account the variable proportion of a-Al2O3 and c-Al2O3
forms in an alumina coating, the comparison of the estimated Young’s modulus with

published data gives reasonable agreement for the coating prepared over a wide range of

processes and experimental conditions.
1. Introduction
The mechanical properties of materials are generally
a sensitive function of their microstructure and the
relationship between microstructure and properties
therefore forms a central theme of materials science.
Although similar considerations can undoubtedly be
applied to thermally sprayed coatings, there has been
relatively little study of this technologically-significant
topic. The microstructure of thermally sprayed coat-
ings is markedly different to conventionally processed
materials since they consist of rapidly solidified lamel-
lae formed by the impact of a succession of molten
droplets. An important feature of ceramic coating
microstructure is the presence of a complex network of
pores associated with imperfect contact between
lamellae, microcracks within lamellae and the incor-
poration of partly melted particles. The microstruc-
ture is therefore strongly related to the mechanics of
coating formation and may be regarded as the major
link between processing parameters and coating prop-
erties [1].

The elastic moduli, which relate the reversible de-
formation of materials to applied stress, are basic

parameters associated with mechanical behaviour.
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Two moduli are required to describe the stress—strain
behaviour of an isotropic material and Young’s
modulus (E) and Poisson’s ratio (v) are normally used
in an engineering context. The Young’s modulus of
a dense, isotropic, single phase solid is generally re-
garded as largely microstructure independent and re-
lated to the forces between the constituent atoms or
ions. For dense, multi-phase solids with an isotropic
microstructure, E may be simply related to the volume
fraction of the phases and their respective moduli. The
Young’s modulus of many porous materials, that is,
two phase structures in which the second phase has
E"0, is found to conform to empirical relationships
such as E"E

0
exp(!bp), where E

0
is the modulus of

the dense material, p the volume fraction porosity and
b a constant [2]. The pore morphology and distribu-
tion may, however, have an additional influence on
Young’s modulus. An analysis for a solid containing
pores in the form of oriented spheroids indicates
a large reduction in Young’s modulus at small poros-
ity for disc-shaped pores, oriented with their diameter
perpendicular to the stress axis, compared with a dis-
tribution of spherical pores at the same total porosity.

For example, at 5% porosity E is reduced to 0.34E

0
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for a pore diameter-to-thickness ratio of 10, compared
to 0.90E

0
for spherical pores [3].

A number of experimental studies have shown that
the Young’s modulus of a thermally sprayed coating is
very much lower than that observed for the same
material, at similar porosity, prepared by conven-
tional processes [4—9]. This large reduction in
modulus has been ascribed to a microstructural effect
associated with limited ‘‘true’’ contact between the
lamellae of which the coating is constituted [10]. At
an estimated true contact of &25% the apparent
interlamellar contact was found to be consistent with
published elastic modulus and thermal conductivity
data [11]. The imperfect interlamellar contact hypoth-
esis has recently been confirmed experimentally by an
electroplating technique which reveals the porosity
substructure in plasma sprayed ceramic coatings
[12, 13]. Quantitative analysis of this substructure for
plasma sprayed alumina coatings revealed the follow-
ing relationships between the spraying conditions and
features of the microstructure [14].

(a) The mean lamellar thickness remained approx-
imately constant (1.5 to 2 lm), at a constant torch
power of 28 kW as a function of spray distance up to
150 mm, but increased beyond this to &3 lm at
200 mm.

(b) The mean lamellar thickness remained approx-
imately constant (1.5 to 2 lm), for a spray distance of
100 mm, over the power range 21 to 32 kW.

(c) The mean bonding ratio (fraction real contact
area between lamellae) increased from &24% at
a torch power of 21 kW to a saturation level of 32% at
powers greater than 25 kW (spraying distance 100 mm).

(d) The mean bonding ratio decreased to less than
20% at spray distances greater than 100 mm (torch
power 28 kW).

(e) The vertical crack density within lamellae de-
creased from &1.5 per 10 lm at a spraying distance of
100 mm to &1 per 10 lm at spraying distances
150&200 mm (torch power 28 kW).

(f ) The vertical crack density increased with torch
power from &1 per 10 lm at 21 kW to &1.75 per
10 lm at 32 kW at a spray distance of 100 mm.

A study of the stress—strain behaviour of plasma
a cross-section (— — — — bonded interface, —— non-bonded interface) [

sprayed alumina coatings (open porosity &4%,
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a-Al
2
O

3
content &10%) perpendicular and parallel

to the coating plane indicated that they exhibited
planar elastic anisotropy, a result not unexpected con-
sidering the lamellar microstructure of thermally
sprayed coatings [15]. It should be noted that five
independent moduli are required to describe planar
elastic anisotropy. Although the stress—strain curves
were linear elastic in the coating plane, non-linear
elastic behaviour was observed in tension perpendicu-
lar to the coating plane. Similar non-linear elastic
behaviour has also been observed in plasma sprayed
Ni—Al coatings in which the Young’s modulus perpen-
dicular to the coating plane was &40% of that ob-
served for an electroplated Ni coating, in good agree-
ment with the fraction interlamellar contact estimated
from porosity measurements [16]. The non-linear
elastic behaviour observed in these coatings was as-
cribed to the opening of interlamellar pores initially
clamped together by residual stresses.

The present paper examines the elastic response of
the idealized lamellar structure of a thermally sprayed
coating in more detail using circular plate bending
theory.

2. The coating microstructural model
The structure of a flattened particle in a typical plasma
sprayed alumina coating, derived from studies using
the copper plating technique is illustrated in Fig. 1
[12—14]. An idealized coating structure based on this,
for the purpose of analysis of elastic behaviour is
shown in Fig. 2. It is assumed to consist of a random
stacking of circular lamellae of mean thickness d, each
of which contains a network of orthogonal micro-
cracks perpendicular to the lamellar plane with mean
crack width x and spacing y. True contact between
lamellae occurs at circular regions, radius a, with
mean fraction true contact (bonding ratio) between
lamellae a.

It is also assumed that the structure consists of
parallel lamellar layers with identical thickness
and that the individual bonded areas, radius a, be-
tween adjacent lamellae are uniformly distributed
along the interface; the tortuosity of the lamellae is

neglected.
Figure 1 Schematic diagrams of the structure of a flattened ceramic particle in a coating and bonding to the coating: (a) top view and (b)

12, 13].



Figure 2 Idealized model of coating structure: (a) plan view of lamellar interface and (b) cross-section of coating.
3. Mechanical behaviour of the model
structure under load

When a load is applied to the coating in the direction
perpendicular to the coating plane, the force must be
transferred from one surface of the coating to the
other through the bonded regions between lamellae.
Thus there is localized elastic strain at the bonded
regions and elastic deflection of the lamellae in the
non-bonded regions between them. The following as-
sumptions are made.

1. The bonded area is rigid and does not deflect
under stress.

2. The lamellae deflect elastically in the unbonded
regions.

3. The effects of stress concentration at the periph-
ery of the bonded regions are neglected.

4. The effects of vertical microcracks in the lamellae
and the periphery of the lamellae are neglected.

The total displacement under stress for a single
layer in the coating is then the result of bending of the
unbonded area plus displacement at the bonded area.
The displacement for a single layer will be that be-
tween points A and B as shown in Fig. 3.

If the stress applied to the coating perpendicular to

the coating plane is r, the real stress applied to the
Figure 3 Loading between lamellae by stress r
0

at bonded regions.

contact regions will be:

r
0

" r/a (1)

Supposing *l is the total displacement of a single
lamella then

*l " 2(*l@#f ) (2)

where *l@ is the displacement of point A with respect
to central plane of the lamellae, and f is the deflection
at point C with respect to A. Therefore, the apparent
strain (e) in the coating becomes:

e " *l/d (3)

and the apparent Young’s modulus (E
#
) of the coating:

E
#
" r/e (4)

The loading on a single bonded region can be sim-

plified as a circular plate bending as shown in Fig. 4
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Figure 4 Mechanical model for deflection of lamellae between
bonded regions.

and the displacement and deflection may be calculated
as follows [17].

3.1. Displacement (*l@)
The loading for the bonded region may be considered
as shown in Fig. 5. The stress r

0
is uniformly distrib-

uted along the bonded interface. The shear stress (s)
is assumed to be uniformly distributed along the
outer circular cross-section of the bonded region.
The stress r@

x
exerted along the cross-section parallel

to the bonded interface is a function of the position
on the cross-section (x). From the following relation-
ship:

pa2r@
z
" pa2r

0
!2pasx

and using condition x"d, r@
x
"0, we obtain:

r@
x

" r
0
(1!x/d )
e@
x
" r@

x
/E
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Figure 5 Stress distribution in bonded region.

where E is Young’s modulus of the lamellar material.
The total displacement *l@ becomes:

*l@ " P
d

0

e@
x
dx " P

d

0

r
0

E
(1!x/d ) dx "

r
0
d

2E
(5)

3.2. Calculation of deflection (f )
The deflection for a single bonded region on loading
can be calculated from the case of bending of a circular
plate in which the load is applied through the central,
rigid, bonded area and the outer edge is simply sup-
ported because the differential of the slope of deflec-
tion at point c is zero. This may be considered as the
combination of the loading shown in Fig. 4c, in which
the load is built in along the inner edge, uniformly
loaded along the outer edge, and the case shown in
Fig. 4d, in which only the bending moment is uni-
formly applied along the inner edge under the condi-
tion that the slope at the built-in edge is zero because
of the rigidity of the bonded area.

For the case shown in Fig. 4c, the maximum deflec-
tion produced by load P can be obtained as follows
(see Appendix I):

f
1

"

PR2

8pD CA1#
1

2

1!v

1#vBA
b2!1

b2 B
#

1#v

1!v

2

b2!1
ln2bD (6)

where

D "

Ed3

12(1!v2 )
, b "

R

a

E and v are Young’s modulus and Poisson’s ratio of
lamellae plate, respectively.

Therefore, we obtain:

f
1

"

PR2

Ed3

3(1!v2)

2p CA1#
1

2

1!v

1#vBA
b2!1

b2 B
#

1#v

1!v

2

b2!1
ln2bD

"

PR2
f (b ) (7)
Ed3 1



f
1
(b ) "

3(1!v2 )

2p CA1#
1

2

1!v

1#vBA
b2!1

b2 B
#

1#v

1!v

2

b2!1
ln2 bD (8)

For the case shown in Fig. 4d, the maximum deflec-
tion becomes:

f
.

" !C
1

2(1#v)b2
#

ln b
(1!v) (b2!1)

MR2

D D (9)

From the condition that the slope at the built in edge
is zero:

M "

P

4p

(1!v) (b2!1)#2(1#v)b2 ln b

(1#v)b2#(1!v)
(10)

Substituting this in Equation 9 we obtain:

f
.

" !

PR2

4pD

[(1!v) (b2!1)#2(1#v)b2 lnb]2

[(1#v)b2#(1!v)]

]
1

2(1!v2)b2 (b2!1)
(11)

From

D "

Ed3

12(1!v2 )

f
.

" !

3PR2

2pEd3

[(1!v) (b2!1)#2(1#v)b2 lnb]2

b2(b2!1) [(1#v)b2#(1!v)]

" !

PR2

Ed3
f
2
(b ) (12)

where

f
2
(b) "

3

2p

[(1!v) (b2!1)#2(1#v)b2 lnb]2

b2(b2!1) [(1#v)b2#(1!v)]
(13)

The total deflection becomes:

f " f
1
#f

.

"

PR2

Ed3
[ f

1
(b )!f

2
(b )] (14)

3.3. Apparent Young’s modulus of coating
The total displacement *l becomes:

*l " 2( f#*l@ )

" 2 G
PR2

Ed3
[ f

1
(b )!f

2
(b )]#

p
0
d

2E H (15)

Substituting this in Equation 3 we obtain the apparent
coating strain:

e "

*l

d
"

r
0

E
#

2PR2

Ed4
[ f

1
(b )!f

2
(b )] (16)

Noting that P"na2r
0

e "

r
0

E G1#
2pa2R2

d4
[ f

1
(b )!f

2
(b )]H

"

r
0 1#2p

a 4
b2[ f (b )!f (b )] (17)
E G AdB 1 2 H
Figure 6 Relation between relative Young’s modulus (E
#
/E

0
) and

lamellar bonding ratio as a function of a/d. Poisson’s ratio is 0.25.

Substituting Equation 1 and Equation 17 into Equa-
tion 4, we obtain:

E
#
"

r

e

" aE G1#2p A
a

dB
4

b2[ f
1
(b )!f

2
(b )]H

~1
(18)

Therefore, the relative Young’s modulus perpendicu-
lar to the coating plane with respect to the modulus of
the dense material is:

E
#

E
" a G1#2p A

a

dB
4

b2[ f
1
(b )!f

2
(b )]H

~1
(19)

Note that deflection owing to bending only takes
place under the following condition:

R ' a (20)

From the relation:

R " a/2(p/2a)1@2 (21)

we obtain that Equation 18 is valid when the mean
bonding ratio between lamellae is less than 40%, by
letting R"a. When a is larger than 40%, the deflec-
tion by bending can be neglected. Therefore we obtain:

E
#
/E " a (a*40%) (22)

The relationship between E
#
/E and the interlamellar

bonding ratio as a function of a/d is illustrated in
Fig. 6.

4. Discussion
The analysis shows that the Young’s modulus of the
idealized model of a thermally sprayed coating per-
pendicular to the coating plane has two components:
one related to the localized elastic deformation at
bonded regions between lamellae, which is directly
proportional to the bonding ratio or fraction real
contact area between lamellae, and another related to
bending of lamellae between bonded regions. The lat-
ter effect only becomes significant for a bonding ratio
of less than &40% and depends strongly on the ratio
of the mean dimension of the individual contact re-

gions (a) to the mean lamellar thickness (d).
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Measurements of the microstructural parameters of
plasma sprayed alumina coatings, using the copper
plating technique, have shown that a maximum mean
bonding ratio is achieved as the spraying power is
increased beyond 25 kW for torch—substrate distances
of 80—120 mm; at larger distances the deposition effi-
ciency and bonding ratio both decrease. The mean
lamellar thickness remains constant at 1.5—2 lm for
spray distances of 80—150 mm and is largely indepen-
dent of torch power. The mean radius of the real
contact region is approximately 5 lm [14].

Using these values we obtain from Fig. 6 (a/d"3,
a"32%) the result E

#
/E"24%. Without the contri-

bution from lamellar bending E
#
/E would be 32%,

that is, equal to the mean bonding ratio.
Although several studies of the elastic moduli of

thermally sprayed alumina coatings have been re-
ported, their interpretation is complicated because the
materials have not always been well characterized and
a variety of measurement techniques have been em-
ployed (Table I).

Unfortunately, interpretation of the data is also
more difficult because coatings consist of a mixture of
the stable a-Al

2
O

3
and metastable c-Al

2
O

3
forms, the

proportions of which depend upon the spraying con-
ditions since c-Al

2
O

3
is formed by the rapid solidifi-

cation of completely molten droplets and a-Al
2
O

3
arises from the incorporation of incompletely melted
particles [18]. The Young’s modulus of completely
dense a-Al

2
O

3
is &400 GPa [19] but that of c-Al

2
O

3
cannot be measured directly because of the unavaila-
bility of dense bulk specimens. The Young’s modulus
of c-Al

2
O

3
would be expected to be comparable with

that of spinel (MgO ·Al
2
O

3
), 241 GPa [19], which has

the same crystal structure but with 2/3rds of the Mg2`
sites occupied by Al3`. It is possible to estimate the
compressibility (b ) of solid solutions formed from
pure compounds from the relationship [20]:

»
j
b
j
"

n
+
i/1

X
i
»
i
b
i

(23)

where, »
j
"molar volume of solution of composition

j, »
i
"molar volume and X

i
"mole fraction of the ith

component of the solution. This relationship may be
used to estimate »

j
b
j
for c-Al

2
O

3
by extrapolation of

experimental data for spinel-alumina solid solutions
to pure alumina. This gives a value of 1.42 for the ratio
of (»b )

41*/%-
: (»b)c and, taking into account the molar

volumes, bc/b41*/%-
"0.98. Since the bulk modulus,

B"1/b and E"3B(1!2v), an estimated Ec/E41*/%-
"1.02 is arrived at assuming v is the same for both
phases, that is, an estimated Young’s modulus for
c-Al

2
O

3
of 246 GPa.

Another factor to consider is the apparent elastic
anisotropy of thermally sprayed coatings as observed
by McPherson and Cheang [15]. Their measurements
of the Young’s modulus of plasma sprayed coatings
perpendicular and parallel to the coating plane, gave
values of 29 and 88 GPa, respectively, with non-linear
elastic behaviour in tension perpendicular to the
coating plane. If these results are correct it means

that the values reported in the literature are averages
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TABLE I Reported values of Young’s modulus of thermally
sprayed alumina coatings

Young’s % a-Al
2
O

3
Porosity Spraying Reference

modulus (%) process
(GPa)

34—40 0 8—10 Flame 4
15—28 &33 — Plasma 5
39 — 3 Plasma 6
31 — 23 Plasma 7
54 5—20 — Plasma 8
20—50 0 7.5—11 Flame 9
60—90 25—34 14—16 Plasma 9

which depend upon the measurement technique em-
ployed.

Fig. 6 shows that, for the idealized lamellar micro-
structure, the lamellar bending contribution becomes
much more important and E

#
rapidly decreases as the

bonding ratio falls below &40%. An important fea-
ture of these results is the large effect on modulus of
microstructural factors such as mean lamellar thick-
ness, mean contact region diameter and spacing over
the range of bonding areas observed in practical coat-
ings.

Applying the results to alumina coatings entirely of
c-Al

2
O

3
, with estimated Young’s modulus of

250 GPa, and using previously measured microstruc-
tural data, gives the result shown in Fig. 7 (0%
a-Al

2
O

3
). The presence of a-Al

2
O

3
(Young’s modulus

400 GPa) in alumina coatings would be expected to
increase their modulus. One approach to estimating
this effect is to substitute a weighted mean modulus of
the two phases for E

0
in the calculation but this

assumes that both phases are distributed as similar
lamellae in the microstructure whereas the a-Al

2
O

3
is

present in plasma sprayed coatings as spherical par-
ticles, arising from the incorporation of partly melted
material, in a matrix of lamellar c-Al

2
O

3
[10]. An-

other approach is to estimate a modulus for the
coating based on a weighted mean of the moduli of
lamellar c-Al

2
O

3
(from Fig. 6) and dense a-Al

2
O

3
, but

this assumes perfect bonding between the a-Al
2
O

3
inclusions and the matrix which is unlikely. A more
reasonable approach is to estimate the modulus for
a mixture of lamellar c-Al

2
O

3
, taking into account

their elastic deflection from Fig. 6, and a-Al
2
O

3
using

the same mean bonding ratio, that is, with no lamellar
deflection component. The results for this case are
shown in Fig. 7 for coatings containing 0, 10, 20 and
30 volume per cent a-Al

2
O

3
. As shown, the latter

approach gives values of Young’s modulus for coat-
ings with bonding ratios from 26 to 34% and a-Al

2
O

3
contents from 0 to 30 vol% which covers the rather
wide range of values reported in the literature.

Although the proposed model is in qualitative
agreement with published data, no account has been
taken of the microcrack network present in ceramic
lamellae, the planar anisotropy of properties to be
expected from the lamellar microstructure, or the
convoluted structure of lamellae. A more complete

experimental study would require a quantitative



Figure 7 Estimated Young’s modulus of alumina coating as a func-
tion of bonded ratio and percentage a-Al

2
O

3
as unmelted particles.

Range of experimental values from the literature are shown by
dahsed lines. Key: a-Al

2
O

3
content; n 0%; s 10%; m 20% and

d 30%.

microstructural analysis of coatings prepared from
a material which does not undergo a phase change
during spraying, combined with determination of their
elastic constants in the coating plane and perpendicu-
lar to it.

5. Conclusions
The relationship between the Young’s modulus per-
pendicular to the coating plane and the microstruc-
ture of thermally sprayed ceramic coating has been
theoretically established using an idealized micro-
structural model consisting of the stacking of lamellae
a few micrometres thick and flat circular plate theory.
There are two components of the elastic strain of the
coating under tensile stress, one arising from localized
elastic strain at regions of ‘‘true’’ contact between
lamellae and the other arising from elastic bending of
the lamellae between the contact regions. The bending
component only becomes significant for percentage
true contact between lamellae (bonding ratio) of less
than 40%. The bending strain contribution depends
strongly upon geometrical parameters of the coating
microstructure. The estimated Young’s modulus for
a ‘‘typical’’ alumina coating, based on quantitative
metallographic data, was &24% that of the fully
dense material. Comparison with published data for
alumina is complicated by the fact that practical coat-
ings consist of a variable proportion of the a- and
c-forms of Al

2
O

3
, and taking this into account, using

an estimated value for the Young’s modulus of c-
Al

2
O

3
, gives reasonable agreement with published

values for thermally-sprayed coatings prepared using
a range of processes and experimental conditions.

Appendix A
The differential equation for the deflection of a

circular plate symmetrically loaded as shown in
Fig. 4 is:

d

dr C
1

r

d

dr Ar
dw

dr BD "

Q

D
(A1)

where w is the deflection at radius r from axis of plate
in the downward direction, r is the radius at which
deflection is considered. Q is the shearing force per
unit circumferential length at radius r and D is the
flexural rigidity of the plate"Ed3/12(1!v2 ). For the
case illustrated in Fig. 4c, where a load P is uniformly
distributed along the edges, Q"P/2pr . Substituting
Q in Equation A1 and integrating, we obtain:

w "

Pr2

8pD Aln
r

R
!1B#

r2

4
C

1
#C

2
ln

r

R
#C

3
(A2)

From the following boundary conditions for Fig. 4c,
we can determine the integration constants C

1
, C

2
and C

3
. When

r " R, w " 0

r " R, (M
1
)
r/R

" 0 (A3)

r " a, (M
1
)
r/a

"0

where M
1

is the radial bending moment per unit
length. From plate theory:

M
1

" !D A
d2w

dr2
#

v

r

dw

dr B (A4)

From Equation A2 we obtain:

dw

dr
"

Pr

4pD
ln

r

R
!

Pr

8pD
#

rC
1

2
#

C
2

r
(A5)

d2w

dr2
"

P

4pD
ln

r

R
#

P

8pD
#

C
1

2
!

C
2

r2
(A6)

Using these conditions we obtain:

C
1

"

P

4pD A
2a2

R2!a2
ln

a

R2
!

1!v

1#vB
C

2
"

P

4pD

1#v

1!v

R2a2

R2!a2
ln

a

R
(A7)

C
3

"

PR2

8pD C1#
1

2

1!v

1#v
!

a2

R2!a2
ln

a

RD
Substituting the values of the above constants in
Equation A2, the deflection at the radius r can be
obtained. The maximum deflection occurs when r"R
and is:

w "

PR2

8pD CA1#
1

2

1!v

1#vBA
R2!a2

R2 B
#

1#v

1!v

2a2

R2!a2
ln2

R

a D (A8)

Appendix B
For the case shown in Fig. 4d, where only the

bending moment is distributed along the inner edge,
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the shearing force becomes zero, Q"0. That is,

d

dr C
1

r

d

dr Ar
dw

dr BD " 0 (B1)

Integrating Equation B1 twice we obtain:

dw

dr
"

C
1

2
r#

C
2
r

(B2)

Integrating again, we obtain the deflection:

w "

C
1

4
r2#C

2
ln

r

R
#C

3
(B3)

In this case, the boundary conditions become:

w D
r/R

" 0

M
1
D
r/a

" M (B4)

M
1
D
r/R

" 0

Using these equations we find:

C
1

"

2Ma2

(1#v)D (R2!a2)

C
2

"

MR2a2

(1!v)D (R2!a2)
(B5)

C
3

" !

MR2a2

2(1#v)D(R2!a2)

Putting the values of the above constants in Equation
B3 we find:

w " !

a2M(R2!r2 )

2(1#v)D (R2!a2)

#

MR2a2

(1!v)D(R2!a2)
ln

r

R
(B6)

Superposing case (c) and case (d) in Fig. 4 we can find
the deflection under loading as shown in case (b).
Using the condition that the slope at r"a is zero, that
is, the slope introduced by load P balances that
introduced by moment M, the moment can be deter-

mined using Equation A5 and Equation B2 and the
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corresponding integration constants. Thus:

M "

P

4p[1#v]
R2

a2
(1!v)

C(1!v) A
R2

a2
!1B

#2(1#v)
R2

a2
ln

R

a D (B7)
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